Klasifikasi Varietas Unggul Padi Menggunakan Metode Bagging, Boosting, dan Extremely Randomized Trees

نویسندگان

چکیده

Rice is one of the agricultural products which main commodity in Indonesia. Supporting factors that play a very important role efforts to increase rice production are superior varieties. Superior varieties have characteristics similar another. Thus, farmers must choose used through classification process determine appropriate type rice. At this stage, three methods used: bagging, boosting, and extremely randomized trees. From analysis results, overall method trees has more optimal capabilities compared bagging boosting methods. This indicated by parameters, sensitivity, specificity, accuracy, highest values.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization

Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...

متن کامل

Bagging and Boosting Classification Trees to Predict Churn

In this paper, bagging and boosting techniques are proposed as performing tools for churn prediction. These methods consist of sequentially applying a classification algorithm to resampled or reweigthed versions of the data set. We apply these algorithms on a customer database of an anonymous U.S. wireless telecom company. Bagging is easy to put in practice and, as well as boosting, leads to a ...

متن کامل

Bagging, Boosting, and C4.5

Breiman's bagging and Freund and Schapire's boosting are recent methods for improving the predictive power of classiier learning systems. Both form a set of classiiers that are combined by voting, bagging by generating replicated boot-strap samples of the data, and boosting by adjusting the weights of training instances. This paper reports results of applying both techniques to a system that le...

متن کامل

Combining Bagging and Boosting

Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, i...

متن کامل

Parallelizing Boosting and Bagging

Bagging and boosting are two general techniques for building predictors based on small samples from a dataset. We show that boosting can be parallelized, and then present performance results for parallelized bagging and boosting using OC1 decision trees and two standard datasets. The main results are that sample sizes limit achievable accuracy, regardless of computational time spent; that paral...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: STATISTIKA: Journal of Theoretical Statistics and Its Applications

سال: 2022

ISSN: ['2599-2538', '1411-5891']

DOI: https://doi.org/10.29313/statistika.v22i2.1455